LDS-Inspired Residual Networks
نویسندگان
چکیده
منابع مشابه
Residual Networks of Residual Networks: Multilevel Residual Networks
A residual-networks family with hundreds or even thousands of layers dominates major image recognition tasks, but building a network by simply stacking residual blocks inevitably limits its optimization ability. This paper proposes a novel residual-network architecture, Residual networks of Residual networks (RoR), to dig the optimization ability of residual networks. RoR substitutes optimizing...
متن کاملDomino inspired MOBILE networks
MOBILE networks can be operated in a gate-level pipelined fashion allowing high throught-output. If MOBILE gates are directly chained, a four-phase clock scheme is requiered. A single phase scheme has been recently reported that alternates rising and falling edge triggered MOBILE gates. This paper proposes and validates a novel two-phase interconnection scheme resembling conventional domino pip...
متن کاملQuantum-inspired Neural Networks
Quantum computing (physically-based computation founded on quantum-theoretic concepts) is gaining prominence because of recent claims for its massively increased computational eeciency, its potential for bridging brain and mind, and its increasing relevance as computer technology develops into nanotechnology. Its impact on neural information processing has so far been minimal. This paper introd...
متن کاملResidual closeness in networks
A new characteristic (residual closeness) which can measure the network resistance is presented. It evaluates closeness after removal of vertices or links, hence two types are considered—vertices and links residual closeness. This characteristic is more sensitive than the well-known measures of vulnerability—it captures the result of actions even if they are small enough not to disconnect the g...
متن کاملVisualizing Residual Networks
Residual networks are the current state of the art on ImageNet. Similar work in the direction of utilizing shortcut connections has been done extremely recently with derivatives of residual networks and with highway networks. This work potentially challenges our understanding that CNNs learn layers of local features that are followed by increasingly global features. Through qualitative visualiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2019
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2018.2869680